DISC: Deep Image Saliency Computing via Progressive Representation Learning
نویسندگان
چکیده
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملLearning Hierarchical Image Representation with Sparsity, Saliency and Locality
We present a deep learning model for hierarchical image representation in which we build the hierarchy by stacking up the base models layer by layer. In each layer, the base model receives the features of the lower layer as input and produces a more invariant and complex representation. The bottom layer receives raw images as input and the top layer produces an image representation that can be ...
متن کاملDeep Learning for Object Saliency Detection and Image Segmentation
In this paper, we propose several novel deep learning methods for object saliency detection based on the powerful convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify an input image based on the pixel-wise gradients to reduce a cost function measuring the class-specific objectness of the image. The pixel-wise gradients can be efficiently compute...
متن کاملA Deep Learning Based Fast Image Saliency Detection Algorithm
In this paper, we propose a fast deep learning method for object saliency detection using convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify the input images based on the pixel-wise gradients to reduce a pre-defined cost function, which is defined to measure the class-specific objectness and clamp the class-irrelevant outputs to maintain image...
متن کاملDeep Learning in Image Computing: An Overview
Deep learning is a growing trend in computing. It is an improvement to artificial neural network. Deep Neural Networks are used in image classification, detection and segmentation. In this paper, an overview is carried out about the usage of deep neural network in various areas of image computing including image quality assessment, document imaging, object recognition, medical imaging, content ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2016
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2015.2506664